3.2589 \(\int \frac {1}{(b e-c e x)^{2/3} (b^2+b c x+c^2 x^2)^{2/3}} \, dx\)

Optimal. Leaf size=71 \[ \frac {x \left (1-\frac {c^3 x^3}{b^3}\right )^{2/3} \, _2F_1\left (\frac {1}{3},\frac {2}{3};\frac {4}{3};\frac {c^3 x^3}{b^3}\right )}{\left (b^2+b c x+c^2 x^2\right )^{2/3} (b e-c e x)^{2/3}} \]

[Out]

x*(1-c^3*x^3/b^3)^(2/3)*hypergeom([1/3, 2/3],[4/3],c^3*x^3/b^3)/(-c*e*x+b*e)^(2/3)/(c^2*x^2+b*c*x+b^2)^(2/3)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 71, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {713, 246, 245} \[ \frac {x \left (1-\frac {c^3 x^3}{b^3}\right )^{2/3} \, _2F_1\left (\frac {1}{3},\frac {2}{3};\frac {4}{3};\frac {c^3 x^3}{b^3}\right )}{\left (b^2+b c x+c^2 x^2\right )^{2/3} (b e-c e x)^{2/3}} \]

Antiderivative was successfully verified.

[In]

Int[1/((b*e - c*e*x)^(2/3)*(b^2 + b*c*x + c^2*x^2)^(2/3)),x]

[Out]

(x*(1 - (c^3*x^3)/b^3)^(2/3)*Hypergeometric2F1[1/3, 2/3, 4/3, (c^3*x^3)/b^3])/((b*e - c*e*x)^(2/3)*(b^2 + b*c*
x + c^2*x^2)^(2/3))

Rule 245

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*x*Hypergeometric2F1[-p, 1/n, 1/n + 1, -((b*x^n)/a)],
x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILtQ[Simplify[1/n + p], 0] && (IntegerQ[p
] || GtQ[a, 0])

Rule 246

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])/(1 + (b*x^n)/a)^Fr
acPart[p], Int[(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILt
Q[Simplify[1/n + p], 0] &&  !(IntegerQ[p] || GtQ[a, 0])

Rule 713

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[((d + e*x)^FracPart[p
]*(a + b*x + c*x^2)^FracPart[p])/(a*d + c*e*x^3)^FracPart[p], Int[(d + e*x)^(m - p)*(a*d + c*e*x^3)^p, x], x]
/; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[b*d + a*e, 0] && EqQ[c*d + b*e, 0] && IGtQ[m - p + 1, 0] &&  !Intege
rQ[p]

Rubi steps

\begin {align*} \int \frac {1}{(b e-c e x)^{2/3} \left (b^2+b c x+c^2 x^2\right )^{2/3}} \, dx &=\frac {\left (b^3 e-c^3 e x^3\right )^{2/3} \int \frac {1}{\left (b^3 e-c^3 e x^3\right )^{2/3}} \, dx}{(b e-c e x)^{2/3} \left (b^2+b c x+c^2 x^2\right )^{2/3}}\\ &=\frac {\left (1-\frac {c^3 x^3}{b^3}\right )^{2/3} \int \frac {1}{\left (1-\frac {c^3 x^3}{b^3}\right )^{2/3}} \, dx}{(b e-c e x)^{2/3} \left (b^2+b c x+c^2 x^2\right )^{2/3}}\\ &=\frac {x \left (1-\frac {c^3 x^3}{b^3}\right )^{2/3} \, _2F_1\left (\frac {1}{3},\frac {2}{3};\frac {4}{3};\frac {c^3 x^3}{b^3}\right )}{(b e-c e x)^{2/3} \left (b^2+b c x+c^2 x^2\right )^{2/3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.21, size = 258, normalized size = 3.63 \[ -\frac {3 \left (-\sqrt {3} \sqrt {-b^2}+b+2 c x\right ) \left (\frac {-\sqrt {3} \sqrt {-b^2} c x+3 b^2+\sqrt {3} \sqrt {-b^2} b+3 b c x}{\sqrt {3} \sqrt {-b^2} c x+3 b^2-\sqrt {3} \sqrt {-b^2} b+3 b c x}\right )^{2/3} \sqrt [3]{e (b-c x)} \, _2F_1\left (\frac {1}{3},\frac {2}{3};\frac {4}{3};\frac {4 \sqrt {3} \sqrt {-b^2} (b-c x)}{\left (3 b+\sqrt {3} \sqrt {-b^2}\right ) \left (-b-2 c x+\sqrt {3} \sqrt {-b^2}\right )}\right )}{\left (3 b-\sqrt {3} \sqrt {-b^2}\right ) c e \left (b^2+b c x+c^2 x^2\right )^{2/3}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((b*e - c*e*x)^(2/3)*(b^2 + b*c*x + c^2*x^2)^(2/3)),x]

[Out]

(-3*(e*(b - c*x))^(1/3)*(b - Sqrt[3]*Sqrt[-b^2] + 2*c*x)*((3*b^2 + Sqrt[3]*b*Sqrt[-b^2] + 3*b*c*x - Sqrt[3]*Sq
rt[-b^2]*c*x)/(3*b^2 - Sqrt[3]*b*Sqrt[-b^2] + 3*b*c*x + Sqrt[3]*Sqrt[-b^2]*c*x))^(2/3)*Hypergeometric2F1[1/3,
2/3, 4/3, (4*Sqrt[3]*Sqrt[-b^2]*(b - c*x))/((3*b + Sqrt[3]*Sqrt[-b^2])*(-b + Sqrt[3]*Sqrt[-b^2] - 2*c*x))])/((
3*b - Sqrt[3]*Sqrt[-b^2])*c*e*(b^2 + b*c*x + c^2*x^2)^(2/3))

________________________________________________________________________________________

fricas [F]  time = 0.82, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (c^{2} x^{2} + b c x + b^{2}\right )}^{\frac {1}{3}} {\left (-c e x + b e\right )}^{\frac {1}{3}}}{c^{3} e x^{3} - b^{3} e}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-c*e*x+b*e)^(2/3)/(c^2*x^2+b*c*x+b^2)^(2/3),x, algorithm="fricas")

[Out]

integral(-(c^2*x^2 + b*c*x + b^2)^(1/3)*(-c*e*x + b*e)^(1/3)/(c^3*e*x^3 - b^3*e), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (c^{2} x^{2} + b c x + b^{2}\right )}^{\frac {2}{3}} {\left (-c e x + b e\right )}^{\frac {2}{3}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-c*e*x+b*e)^(2/3)/(c^2*x^2+b*c*x+b^2)^(2/3),x, algorithm="giac")

[Out]

integrate(1/((c^2*x^2 + b*c*x + b^2)^(2/3)*(-c*e*x + b*e)^(2/3)), x)

________________________________________________________________________________________

maple [F]  time = 3.10, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (-c e x +b e \right )^{\frac {2}{3}} \left (c^{2} x^{2}+b c x +b^{2}\right )^{\frac {2}{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-c*e*x+b*e)^(2/3)/(c^2*x^2+b*c*x+b^2)^(2/3),x)

[Out]

int(1/(-c*e*x+b*e)^(2/3)/(c^2*x^2+b*c*x+b^2)^(2/3),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (c^{2} x^{2} + b c x + b^{2}\right )}^{\frac {2}{3}} {\left (-c e x + b e\right )}^{\frac {2}{3}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-c*e*x+b*e)^(2/3)/(c^2*x^2+b*c*x+b^2)^(2/3),x, algorithm="maxima")

[Out]

integrate(1/((c^2*x^2 + b*c*x + b^2)^(2/3)*(-c*e*x + b*e)^(2/3)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\left (b\,e-c\,e\,x\right )}^{2/3}\,{\left (b^2+b\,c\,x+c^2\,x^2\right )}^{2/3}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((b*e - c*e*x)^(2/3)*(b^2 + c^2*x^2 + b*c*x)^(2/3)),x)

[Out]

int(1/((b*e - c*e*x)^(2/3)*(b^2 + c^2*x^2 + b*c*x)^(2/3)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (- e \left (- b + c x\right )\right )^{\frac {2}{3}} \left (b^{2} + b c x + c^{2} x^{2}\right )^{\frac {2}{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-c*e*x+b*e)**(2/3)/(c**2*x**2+b*c*x+b**2)**(2/3),x)

[Out]

Integral(1/((-e*(-b + c*x))**(2/3)*(b**2 + b*c*x + c**2*x**2)**(2/3)), x)

________________________________________________________________________________________